CH2MHILL.

Traverse City Regional Wastewater Treatment Plant Membrane Replacement Update

City Commission and Grand Traverse County Board of Public Works Joint Study Session December 8, 2014

Agenda

- Background
- Revised Membrane Configuration
- Wet Weather, High-Flow Events
- Membrane Permeability
- Risk of Impaired Permeability
- Recommendations
- Discussion

Background

- CH2M Hill has operated the Traverse City RWWTP since 1990
- Plant was converted to membrane bioreactor (MBR) process - began producing high-quality membrane-filtered effluent July 2004
- Original membranes from Train 1 were redistributed to other trains (mid 2014)
- New membranes installed in Train 1 (Oct. 2014)
- New membranes have dramatically higher permeability than original membranes.
- Two "near misses" and other signs that original membranes are near end of life
- Recommend replacing 4 trains in 2015 and 3 remaining trains in 2016

Original Membrane Configuration

Current Membrane Configuration

Wet Weather, High-Flow Events in 2014

Parameter	April 14th	September 5th	Notes
Storm duration	~10 hours	~4 hours	
Monthly average flow	5.0 mgd	4.7 mgd	Plant capacity 8.5 mgd
Daily average flow	7.0 mgd	6.5 mgd	
Peak flow	9-10 mgd	9-10 mgd	Plant capacity 17 mgd
Process temperature	11°C	20°C	
Permeability	50%	75%	Relative to normal

- Temporary decrease in permeability
- Not associated with gram positive bacteria
- Intensive, manual plant operation required to prevent spill

Membranes Very Near End of Life

- More frequent cleaning required to maintain permeability.
- Train 8 permeability not restored by chemical cleaning had to be cleaned twice
- Train 7 failed "flow test" (performed 3 months after a recovery clean)

October 2014 Membrane "Fit" Test

Train	Normalized Permeability (gfd/psi)	Relative
1 (new membranes)	21.0	100%
2	6.3	30%
3	6.0	29%
4	7.4	35%
5	7.4	35%
6	8.7	41%
7	6.1	29%
8	6.8	32%

- Trains 2-8 show differences in permeability despite being same age.
- Poorest performing membrane trains should be replaced next.

Risk of Impaired Permeability – Year Like 2014

Factors Affecting Risk of Impaired Permeability

- Higher peak flows have occurred than those in 2014.
- Lower process temperatures have occurred than those coinciding with 2014 peak flows.
- Permeability impairment due to gram positive bacteria continues to occur unexpectedly and could coincide with future peak flows.
- Train 1 (new membranes) could be out of service rather than train 6 (original membranes).
- Performance of original membranes will continue to decrease at uncertain rate.

Recommendations

- Replace 4 membrane trains in 2015, remaining 3 trains in 2016.
- Membrane replacement cost updated from last year
 - \$823,000 per train (Sept. 2014 dollars)
 - Previously agreed upon membrane pricing, scaled using consumer price index (US CPI-U)
 - GE design cost no longer applies
 - Includes cost of membrane tank repair/recoating
 - Installation cost includes less GE services / more CH2M HILL services
- 4 trains in 2015 \rightarrow \$3.3 million
- 3 trains in 2016 \rightarrow \$2.5 million
- Future membrane replacement
 - Plan for 4 trains in 2025, 4 trains in 2026
 - Less expensive (in 2014 dollars) because only new modules needed

2015 Recommended Membrane Configuration

2016 Recommended Membrane Configuration

Discussion

Membrane Cost Increase Since 2004 New 500C Modules in new Cassette Frames

Item	2002	2013
Canadian Consumer Price Index	100.0	123.1
Membrane modules	\$377,700	\$465,000
Membrane cassettes (assumed)		\$100,000
Warranty (2 years)		\$9,600
Hoses & miscellaneous parts		\$30,600
GE services		\$60,000
SUBTOTAL		\$665,200
Local sales tax @ 6% (rounded)		\$39,900
Module installation		\$10,000
Used module disposal		\$5,000
Used cassette salvage		-\$3,000
TOTAL (rounded)		\$720,000

Membrane Replacement

- ZENON 500C membranes currently installed (500C32M)
- General Electric (GE) purchased ZENON in 2006
- GE uses 500D membranes for its latest designs
 - Will not manufacturer 500C membranes indefinitely;
 expectation is 2 to 4 more years
 - Standard 500D48M cassette will not fit at TCRWWTP

However, short 500D modules in smaller cassettes will fit

1-1/2 of these (500D16M + 500D8M) fill the space of one existing 500C32M cassette

500C32M (non-standard)

500C22M (standard)

500D48M (standard)

500D16M (standard)